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Abstract The pair-specific ground state energy εg(N) := Eg(N)/(N(N −1)) of Newtonian
N body systems grows monotonically in N . This furnishes a whole family of simple new
tests for minimality of putative ground state energies E x

g (N) obtained through computer
experiments. Inspection of several publicly available lists of such computer-experimentally
obtained putative ground state energies E x

g (N) has yielded several dozen instances of E x
g (N)

which failed one of these tests; i.e., for those N one concludes that E x
g (N) > Eg(N) strictly.

Although the correct Eg(N) is not revealed by this method, it does yield a better upper
bound on Eg(N) than E x

g (N) whenever E x
g (N) fails a monotonicity test. The surveyed N -

body systems include in particular N point charges with 2- or 3-dimensional Coulomb pair
interactions, placed either on the unit 2-sphere or on a 2-torus (a.k.a. Thomson, Fekete, or
Riesz problems).

Keywords Classical N body systems · Coulomb systems · Ground state energies · Riesz
energies · Thomson’s problem · Fekete points · Rigorous results · Data analysis

1 Introduction

The pair-specific ground state energy εg(N) of Newtonian N body systems exhibits the
following monotonic dependence on N :

Proposition 1 Let � ⊂ R
d be a bounded and connected domain, and let qk ∈ �. Assume

the following hypotheses on U�(q̌, q̂):

(H1) Symmetry: U�(q̌, q̂) = U�(q̂, q̌)

(H2) Lower Semi-Continuity: U�(q̌, q̂) is l.s.c. on �×�.
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For N ≥ 2, define the pair-specific ground state energy by

εg(N) ≡ 1

N(N − 1)
min

{q1,...,qN }
∑∑

1≤i<j≤N

U�(q i ,qj ). (1)

Then the sequence N �→ εg(N) so defined is monotonic increasing.

For the convenience of the reader we here reproduce the elementary proof from Appen-
dix A in [13].

Proof of Proposition 1: We begin by noting that under hypotheses (H1) and (H2) the pair-
specific ground state energy εg(N) defined in (1) is well-defined; i.e. εg(N) ∈ R.

To prove the monotonicity of N �→ εg(N), with N ≥ 2, let Eg(N) denote the N -body
ground state energy, i.e. εg(N) = Eg(N)/(N(N − 1)). Using the definition of Eg(N) and
the elementary graph-theoretical identity that the sum over all bonds in a complete N -graph
(N > 2) equals (N − 2)−1 the sum over all bonds of all its complete N − 1-subgraphs, and
using the single inequality that the minimum of a sum is not less than the sum of the minima,
we find

Eg(N + 1) = min{q1,...,qN+1}
∑ ∑

1≤i<j≤N+1

U�(q i ,qj )

= min
{q1,...,qN+1}

1

N − 1

∑

1≤k≤N+1

[
∑ ∑

1≤i<j≤N+1
i 	=k 	=j

U�(q i ,qj )

]

≥ 1

N − 1

∑

1≤k≤N+1

[
min{q1,...,qN+1}\{qk}

∑ ∑

1≤i<j≤N+1
i 	=k 	=j

U�(q i ,qj )

]

= N + 1

N − 1
min{q1,...,qN }

∑∑

1≤i<j≤N

U�(q i ,qj )

= N + 1

N − 1
Eg(N). (2)

Dividing (2) by (N + 1)N yields εg(N + 1) ≥ εg(N), and the proof of the monotonicity of
N �→ εg(N) is complete. �

As already remarked in Appendix A of [13], Proposition 1 and its proof are quite ele-
mentary and presumably known, yet after a serious search in the pertinent literature I came
up empty-handed, and additional consultation with several of my local expert colleagues
have given me the impression that Proposition 1 is perhaps not known, and in any event not
widely known.

In this brief note we will be concerned with a very practical application of Proposition 1
which certainly is not generally known, as we will demonstrate. Namely, the monotonic in-
crease with N of the true pair-specific ground state energies εg(N) furnishes a whole family
of necessary criteria for minimality which any empirical list of computer-experimental data
{E x

g (N);N = 2,3,4, . . . ,N∗} for such ground state energies needs to satisfy; put differently,
we have the following sufficient criterion for failure to be minimal:

∀N ≥ 2 : (∃n ≥ 1 : εx
g(N + n) < εx

g(N) =⇒ E x
g (N) > Eg(N)). (3)
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For each n ≥ 1 one can use (3) as a test for any computer-experimentally produced list of pu-
tative ground state energies {E x

g (N);N = 2,3,4, . . . ,N∗}. Of course, if any particular E x
g (N)

passes the n-th test for each n ≤ N∗ − N , i.e. if εx
g(N + n) ≥ εx

g(N)∀n = 1, . . . ,N∗ − N ,
this does not mean that this E x

g (N) is a true ground state energy; only failing a test is signif-
icant, for (3) asserts that a test-failing E x

g (N) is surely not a ground state energy. Moreover,
whenever E x

g (N) fails any such test, then by Proposition 1 we also get a better empirical
upper bound on the true ground state energy Eg(N) than E x

g (N) from the remaining data of
the computer-generated list {E x

g (N);N = 2,3, . . . ,N∗}:

Eg(N) ≤ min
1≤n≤N∗−N

{
N(N − 1)

(N + n)(N + n − 1)
E x

g (N + n)

}
. (4)

Note that (4) is always true, but it only leads to a better empirical upper bound on Eg(N)

than E x
g (N) when E x

g (N) fails a test. Note also that the computer-experimental data supply
empirical upper bounds to the actual ground state energies within the numerical accuracy,1

i.e. we always have E x
g (N) ≥ Eg(N).

Subjecting some publicly available lists of computer-generated data of putative ground
state energies E x

g (N) for various N -body systems to the above tests has yielded several
dozen instances of E x

g (N) which failed one of these tests; i.e., for those N we conclude that
E x

g (N) > Eg(N) strictly, and we get an improved empirical upper bound on Eg(N) through
(4). The surveyed N -body systems are N point charges with D-dimensional Coulomb pair
interactions (D = 2;3), placed either on the unit 2-sphere or on a 2-torus (variably known as
(elliptic) Fekete, Thomson, and Riesz problems). The analysis of the sphere data is reported
in the next section; for the torus data see Sect. 3.

2 Many Point Charges on the 2-Sphere
Finding the minimum energy configuration(s) of N point charges placed on the unit 2 sphere
S

2 is a beautiful, intriguingly rich, and hard mathematical problem which in addition is rel-
evant to many fields of science; see the survey articles [2, 8, 9, 20], and the website [24].
One can either interpret S

2 as a two-dimensional “physical space” in its own right with
US2(q1,q2) given by the D = 2-dimensional Coulomb pair interaction − ln |q1 − q2|, where
|q1 − q2| is the cordal distance on S

2; incidentally, the cordal distance on S
2 coincides with

the three-dimensional Euclidean distance between two points q1 and q2 on S
2 ⊂ R

3, but
the embedding can be avoided in the discussion. Or, one can interpret S

2 ⊂ R
D for D > 2

as a proper submanifold, with US2(q1,q2) given by the D-dimensional Coulomb pair in-
teraction |q1 − q2|2−D , where |q1 − q2| is the D-dimensional Euclidean distance between
two points q1 and q2 on S

2 ⊂ R
D. For small N the ground state configuration (a.k.a. an

N -tuple of Fekete points) can easily be characterized explicitly,2 and the asymptotic large
N -dependence of Eg(N) can be, and to some extent has been [18] determined analytically
without seeking the exact Fekete points,3 but in general the problem defies analytical treat-
ment. Computer experiments (e.g. [1, 4–6, 8, 17–19]) help finding candidates for the min-
imizing configuration and in any event yield empirical upper bounds E x

g (N) on the ground

1It is assumed here that the algorithms have computed the energy of some configuration.
2For D = 2&3 the first dozen minimizers are discussed in the delightful article [2].
3It “suffices” to know that for large N the Voronoi cells around the charges are mostly hexagons of a certain
size; see [20] for an enlightening discussion. We also remark that the leading order term in the asymptotics
can be determined with the help of a very general variational principle, see [12].
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state energy Eg(N). But even computers are soon overwhelmed because the number of local
minimum energy configurations which are not global seems to grow exponentially with N

[8] so that a computer algorithm is more and more likely to find one of these non-global
minima. Indeed, our tests have successfully detected a couple dozen non-global minimum
energy values because their pair-specific value surpassed an ensuing empirical pair-specific
energy value in some computer-generated list.

2.1 Two-Dimensional Coulomb Interactions

Tables of computer-experimental ground state energies {E x
g (N);N = 2,3,4, . . .} for N point

charges on S
2 with two-dimensional Coulomb pair interaction US2(q1,q2) = − ln |q1 − q2|

can be found on the website [7], more precisely:
http://physics.syr.edu/condensedmatter/thomson/shells/. . .
. . . shelltable.php?topology=sphere&potential=0&start=0&end=5000,

and in [19], which contains many references to earlier studies.
A value of E x

g (N) is listed in [19] for 199 consecutive values of N starting at N = 2;
one also finds there three additional E x

g (N) values for N which correspond to the icosahe-
dral group. On p.116 of their article, the authors describe various careful tests which they
have undertaken to increase the chances of their E x

g (N) actually being Eg(N). In addition
to their tests I now have subjected their list of data {E x

g (N);N = 2,3, . . . ,200} to the n = 1
monotonicity test (which, apparently, is not among the tests which the authors of [19] have
used). Their data passed the n = 1 test (there is no point, then, to test with n > 1).

While all tables in [19] are of course permanent, those at [7], according to these au-
thors, are interactive and are updated whenever some user finds a new and better pair
(N, E x

g (N)). Therefore it is mandatory to also give the information on which day one
downloaded the data from [7] for study, which for the computer-experimental data on the
D = 2 Coulomb ground state energies I did on Feb. 21, 2009; yet, on Feb. 24, 2009 the
crucial data I will be talking about below were still the same. At the time of writing of
this paper, this data list {E x

g (N);N ∈ {3, . . . ,5000}} has (had) plenty of gaps, i.e. putative
ground state energies E x

g (N) are absent for many values of N . While the absence of the
case N = 2 is not a problem, as Eg(2) is exactly known, the first real gap is the absence
of any E x

g (11), any E x
g (19), and soon the gaps become larger and larger. The larger the

gaps, the less likely one is to detect non-globally minimizing E x
g (N) with the monotonicity

tests, yet two data points “got caught in this net”: E x
g (97) = −891.653265231 > Eg(97),

for εx
g(100) − εx

g(97) = −0.013678811 < 0; and E x
g (2000) = −386,187.080630499 >

Eg(2000), for εx
g(4212) − εx

g(2000) = −0.000503199 < 0. Notice that while there is only
a gap of 2 missing data between E x

g (97) and E x
g (100), the gap between E x

g (2000) and
E x

g (4212) is a whopping 2211. Since the non-globally minimizing E x
g (2000) was detected by

the n = 2212 test, it must be quite far away from the actual ground state energy Eg(2000).
By (4), and using E x

g (4212) = −1,722,205.927290610 from [7], we find the upper bound,

Eg(2000) ≤ 2000 · 1999

4212 · 4211
E x

g (4212) = −388,198.8687. (5)

Similarly, with E x
g (100) = −1,083.376338235 from [7], (4) with n = 3 yields Eg(97) ≤

97·96
100·99 E x

g (100) = −1,019.030349; however, this upper bound is certainly beaten by E x
g (97) =

−1,022.023977757 in [19]. Incidentally, several other non-globally minimizing data E x
g (N)

in the list at [7] which actually pass the monotonicity tests can be detected by simply compar-
ing with the list in [19] (at the time of writing, the non-global data at [7] are E x

g (12), E x
g (36),
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Fig. 1 Computer-experimental pair-specific ground state energies εx
g (N) for N point charges on S

2 with

log r−1 Coulomb interactions, using the data of [19] (crosses). Shown also in this plot is the large N asymp-
totic two-term approximation to εg(N) (dots)

E x
g (60), E x

g (87), E x
g (96), E x

g (100)); yet, no such comparison is possible for E x
g (2000) as the

data reported in [19] do not go beyond N = 282.
We end this subsection with an illustration of the monotonicity of the sequence N �→

εg(N) by plotting the monotonically increasing sequence N �→ εx
g(N) ≥ εg(N) using the

data in [19], with “=” for N ≤ 15 [2] (see Fig. 1). Already for N > 50 this empirical curve
seems to agree to within less than 1% absolute error with the large N asymptotics of the
actual sequence N �→ εg(N), given by εg(N) � 1

4 ln e
4 − 1

4 N−1 lnN +O(N−1) and obtained
through dividing by N(N − 1) the large-N asymptotic formula for N �→ Eg(N) [18, 19],

Eg(N) = aN2 + bN lnN + O(N) (6)

with a = 1
4 ln e

4 and b = − 1
4 . In [18] it is also conjectured that, actually,

Eg(N) = aN2 + bN lnN + cN + d lnN + O(1), (7)

and rigorous upper and lower bounds on c are given there. Smale’s 7th problem for the 21st
century asks for an algorithm which upon input N returns an N -point configuration on S

2 for
which E x

g (N) does not deviate from Eg(N) by more than the fourth term in the conjectured
expansion (7) (possibly up to a different coefficient d ′), and which does so in polynomial
time; see [21].

2.2 Three-Dimensional Coulomb Interactions

We next discuss the data for N point charges on the sphere S
2 with three-dimensional

Coulomb interactions US2(q1,q2) = 1/|q1 −q2|, since [23] referred to as “Thomson’s prob-
lem” even though Thomson’s “plum pudding model of the atom” [22] is not quite the same
problem. Be that as it may, there seem to be many more studies of this Thomson problem
than of its variants with other pair interactions and geometries. I perused a sample of those
studies and eventually found data which failed a monotonicity test.

Starting at N = 2, in [8] one finds 111, and in [19] 199 consecutively computed putative
ground state energies E x

g (N) for the Thomson problem (as just defined). Since the authors
in [19] mention that within numerical precision their data agree with those on Sloan’s home
page [11] (actually, at the time: its predecessor via netlib.att.com), I opted for analyzing
the data on [11] which are stored (much) more userfriendly than those in [19] and [8],
even though for only 129 consecutive values of N some value E x

g (N) is listed, starting with
N = 4, plus a handful of other values for Ns up to N = 282. All data at [11] passed the
n = 1 monotonicity test.
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A wonderful treasure of data for the Thomson problem is listed on the website [7], more
precisely:

http://physics.syr.edu/condensedmatter/thomson/shells/. . .
. . . shelltable.php?topology=sphere&potential=1&start=0&end=5000.

I downloaded the data on Feb. 09, 2009, and on Feb. 24 the relevant data were still present.
Starting with N = 3, one finds computer-experimental ground state energies E x

g (N) for an
amazing 1488 consecutive values of N , the first gap occurring at N = 1491. In addition one
finds almost 300 wider spaced E x

g (N) up to N = 5000. Quite remarkably, all the consecutive
values up to N = 1490 passed the monotonicity test, and so did an additional 70 values of
E x

g (N) which are listed with gaps up to N = 1800. The computer-experimental E x
g (1801) =

1,579,605.0292504800 is the first in the list which failed a monotonicity test, in fact the
n = 1 test, with εx

g(1802) − εx
g(1801) = −0.0000044325. Of course, there is also a better

upper bound on Eg(1801) via (4), but it is not much of an improvement. The story is quite
different for the next failing, which is E x

g (2002) = 2,004,888.5938241700, which failed
the 10th and the 20th monotonicity tests, with εx

g(2012) − εx
g(2002) = −0.0125431412 and

εx
g(2022)−εx

g(2002) = −0.012518560. This time we obtain two upper bounds from (4) (for
n = 10 and n = 20), and the better one is for n = 10, viz.

Eg(2002) ≤ 2002 · 2001

2012 · 2011
E x

g (2012) = 1,954,640.745 (8)

which is also a considerable improvement over the listed E x
g (2002). Not surprisingly, in this

long list of computer-experimental data our harvest is richer than in the previous log list.
An additional nine values of E x

g (N) failed one or more of the monotonicity tests (indicated
by (n = ×) behind E x

g (N)), namely

E x
g (2531) = 3,204,550.3074368200 (n = 1;19),

E x
g (2561) = 3,207,772.6856023400 (n = 1),

E x
g (3362) = 5,543,845.2403717400 (n = 2),

E x
g (3480) = 5,941,792.7610333500 (n = 1;2),

E x
g (3663) = 6,586,476.2826423300 (n = 9),

E x
g (3720) = 6,793,857.9289983900 (n = 1),

E x
g (4000) = 7,860,293.8236758000 (n = 2),

E x
g (4260) = 8,920,193.5261720900 (n = 2),

E x
g (4620) = 10,498,739.0438109000 (n = 2;4).

We leave it to the interested reader to use (4) to compute upper bounds on Eg(N) for the N

showing in this table and the pertinent E x
g (N + n) at [7].

All the data in [1, 17] pass the monotonicity test, but these data are few and far between
so that it is actually quite unlikely for any of them to fail a monotonicity test. In fact, [1] in
their table list only five different N ∈ {2, . . . ,2500}(!), with two different E x

g (N) each; [17]
point out that they found a lower energy E x

g (2472) than did [1]. Also [7] provided a putative
value for N = 2472, and their E x

g (2472) = 2,987,485.953(. . .) is even lower than the one in
[17], which is E x

g (2472) = 2,987,486.132. Incidentally, there is also a moral here, to be told
in the last section.
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Fig. 2 Computer-experimental pair-specific ground state energies εx
g (N) for N point charges on S

2 with

r−1 Coulomb interactions, using the data of [11] (crosses). Also shown are the leading three terms in the
conjectured asymptotic large N approximation to εg(N) (dots)

To illustrate the monotonicity of the sequence N �→ εg(N) I plot the monotonically in-
creasing sequence N �→ εx

g(N) ≥ εg(N), this time using the data in [11]. For N ≤ 15 also
these two sequences are identical [2] (see Fig. 2). Also shown in this diagram is the partially
conjectured large N asymptotics εg(N) � 1

2 − 0.55305(. . .)N−1/2 + 1
2N−1 + O(N−3/2),

obtained through dividing by N(N − 1) the following large-N asymptotic formula for
N �→ Eg(N),

Eg(N) = aN2 + bN3/2 + cN + dN1/2 + e + O(N−1/2), (9)

where a = 1/2 is the only rigorously proven coefficient [18], [15], [12], while it is conjec-
tured [18] that c = 0 = e and

b = 3

(√
3

8π

)1/2

ζ

(
1

2

) ∞∑

k=0

(
1√

3k + 1
− 1√

3k + 2

)
= −0.55305 . . . , (10)

whereas d is estimated numerically in [19].

3 Many Point Charges on a 2-Torus

For the perhaps most prominent non-spherical topology, the 2-torus T
2 ⊂ R

3, we found data
lists at [7]. However, these lists are clearly preliminary.

3.1 Two-Dimensional Coulomb Interactions

Curiously, at [7] putative ground state energies E x
g (N) are only listed for four different val-

ues of N , and all of them are obtained with different aspect ratios of the tori. Hence, no
meaningful monotonicity test can be applied.

A visualization of a putative ground state configuration of N point charges with logarith-
mic Coulomb interactions on a 2-torus can be found in [9] and on the cover of that issue of
the Notices, and also at [24].



282 M.K.-H. Kiessling

3.2 Three-Dimensional Coulomb Interactions

At [7] one finds about 50 data of putative ground state energies E x
g (N) for the aspect ratio

1.414, which are computed for sparsely placed N up to N = 5000. For sparsely placed data
one would expect it to be less likely to find some which fail a monotonicity test. However,
the data E x

g (N) for nine N failed a monotonicity test for one or more n, namely:

E x
g (15) = 81.390479174 (n = 5;6;9;11;12),

E x
g (30) = 331.088832684 (n = 2;5;6;7;10),

E x
g (113) = 5,370.892624565 (n = 4;7;38;49;78),

E x
g (262) = 28,287.128667479 (n = 38;238;290),

E x
g (360) = 53,857.158956562 (n = 140;192;200;694),

E x
g (396) = 66,660.796433247 (n = 104;156;164;598),

E x
g (1000) = 418,396.928796506 (n = 363;4000),

E x
g (1363) = 707,154.008010865 (n = 3637, )

E x
g (3500) = 5,174,438.587013800 (n = 1500).

Again, we leave it to the interested reader to use (4) and the above table to compute upper
bounds on Eg(N) from the pertinent data list at [7].

4 Some Variations on the Theme

Two- and three-dimensional Coulomb pair interactions and 2-sphere and 2-torus domains
are merely the most prominent examples of pair interactions U�(q i ,qj ) and d-dimensional
domains � to which Proposition 1 applies. Other, though physically less important, exam-
ples of interactions are D-dimensional Coulomb interactions with D > 3, and more generally
the so-called Riesz interactions, computed with U

(s)
� (q i ,qj ) = −sign (s)|q i − qj |s , for any

real s < 2; see, e.g. [15], [9], [10], [16], [4]. The logarithmic Coulomb interaction is usu-
ally considered to be the special case s = 0, in the sense that lims↓0 s−1(|q i − qj |−s − 1) =
− ln |q i − qj |; For s = 1 the Riesz energy gives U�(q i ,qj ) = −|q i − qj |, in which case
Proposition 1 may shed some new light on the question of the maximum average pair-wise
distance of points in � and related problems; beside the cited general survey articles, also
see [3]. Proposition 1 applies also to other bounded domains, in particular curves! I should
emphasize that the logarithmic interactions between charges constrained to (planar) curves
can be studied in quite some detail with complex variable techniques, see [14]. Proposi-
tion 1 can easily be generalized to unbounded domains, with lower semi-continuity replaced
by another appropriate condition guaranteeing minimizing configurations for all N . A phys-
ically important example is � = R

3 with UR3(q i ,qj ) = |q i − qj |−12 − |q i − qj |−6, which
has minimizing N -body configurations for each N , known as Lennard-Jones clusters, see
[2] for a recent survey. At the expense of replacing the minimum by an infimum, pair in-
teractions which are merely bounded below can be handled also, but minimizing sequences
which don’t converge to a minimizing configuration are perhaps less interesting.



A Note on Classical Ground State Energies 283

5 Summary

The main purpose of this article is to draw attention to the monotonicity tests implied by
Proposition 1 and to emphasize the ups and downs of this monotonicity test family, not
to report on an exhaustive series of such tests covering all available data. In fact, having
demonstrated the utility of these tests, it is much more efficient when they are being directly
implemented in the computer experiments rather than being run by a third person afterwards.

I still owe the reader the moral announced earlier. Originally I had analyzed the data
of computer-experimental ground state energies E x

g (N) reported in [1] which, divided by
N(N − 1), arranged themselves monotonically increasing when plotted vs. N ; in fact, this
prompted me to conjecture and then prove Proposition 1. But, as we saw, those data are
not the correct ground state energies. With hindsight I was quite lucky, for such widely
spaced data almost inevitably form a pair-specific monotonic sequence. Had I hit upon a
more closely spaced list of non-optimal data which would not have been pair-specifically
monotonic, I may not have conjectured the monotonicity in the first place!
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